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Course topics

• Session 1: Introduction to Power systems
• Context and motivation

• Power flow analysis

• Economic dispatch

• Session 2: Renewable sources
• Stochastic models of variable sources

• Dispatching random sources

• Session 3: Energy dispatch
• Risk-limiting dispatch

• Matlab session
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Course topics

• Session 4: Incentive-based demand response
• Modeling demand 
• Peak time rebates
• Contract design for demand response

• Session 5: Flexible loads
• Modeling flexibility
• Load dispatch
• Case study: Electric vehicles

• Session 6: Micro-grids
• Lean energy concept
• Joint generation and load dispatch
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Day-ahead Market

• Given a demand forecast Dk

• And a set of generators G1, G2, G3, …, GN

• What is the lowest cost generation program that supplies the 
demand?

This is the economic dispatch problem!
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Economic Dispatch
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Renewable energies
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Daily average of solar radiation for one year at Medina (Colombia)
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Economic Dispatch

min 𝐽 = ෍
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• Can we use the same approach 
to dispatch renewable sources?

• Can we fix  pj ?

Give possible solutions…
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Renewable energies

• Renewable power generation can be modeled as a stochastic process!



Stochastic Process

Unknown signals:  Can be described by their 

statistical properties.

v(t,x,y,z)  is an stochastic process:

– Sequence of random variables

– Continuous (𝑣 ∈ ℝ) or discrete (𝑣 ∈ S)

– How is it fully described in stochastic sense?

𝐹 𝑋 𝑡1 ,...,𝑋 𝑡𝑘
𝑥1,𝑥2,..., 𝑥𝑘 → 𝑗𝑜𝑖𝑛𝑡 𝑐𝑑𝑓

𝐹 𝑋 𝑡1 ,...,𝑋 𝑡𝑘
𝑥1,𝑥2,..., 𝑥𝑘 = P[𝑥 𝑡1 ≤ 𝑥1,…]



Stochastic Process

Given:

–It is a highly complex representation 

–The pdf is infinite dimensional, for any time k, for any space 

point,..

𝐹 𝑋 𝑡1 ,...,𝑋 𝑡𝑘
𝑥1,𝑥2,..., 𝑥𝑘 = 𝑗𝑜𝑖𝑛𝑡 𝑐𝑑𝑓

The probability density function (pdf) is:

𝑓 𝑋 𝑡1 ,...,𝑋 𝑡𝑘
𝑥1,𝑥2,..., 𝑥𝑘 =

𝜕𝑛𝐹 𝑋 𝑡1 ,...,𝑋 𝑡𝑘
𝑥1,𝑥2,..., 𝑥𝑘

𝜕𝑥1𝑥2...𝑥𝑘



Stochastic Process
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Descriptive pdf of wind speed in east-Denmark constructed from 1970-1979 data



Stochastic Process

Given:

• First moments:

– Expected value

–Covariance

𝑓 𝑋 𝑡1 ,...,𝑋 𝑡𝑘
𝑥1,𝑥2,..., 𝑥𝑘 =

𝜕𝑛𝐹 𝑋 𝑡1 ,...,𝑋 𝑡𝑘
𝑥1,𝑥2,..., 𝑥𝑘

𝜕𝑥1𝑥2,...𝑥𝑘
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(𝑥𝑘−𝐸[𝑥𝑘])( 𝑥𝑙 − 𝐸[𝑥𝑘])𝑓 𝑋 𝑡𝑘 ,𝑋 𝑡𝑙
𝑥𝑘 , 𝑥𝑙; 𝑡𝑘 , 𝑡𝑙 𝑑𝑥𝑘𝑑𝑥𝑙

μ𝑋 𝑡𝑘 = 𝐸𝑋 𝑡𝑘 = න
−∞

∞

𝑥 𝑓𝑋 𝑡𝑘 𝑥; 𝑡𝑘 𝑑𝑥



Stochastic Process
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Stochastic Process
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Stochastic Process
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Quantiles

• Given a probability α, what is the value of the random variable y such 
that:

P[Y<y]= α

That is: 

q(α)=F-1(α)

F is an (strictly)  increasing function of y.
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Quantiles
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Forecast of wind generation expressed as quantiles [1]



Bayesian Estimation
How to obtain an optimal generation forecast from a probabilistic 

description of the  renewable source?



Bayesian Estimation
• The unknown is NOT a parameter

• There is INFORMATION in the form of observed 
realizations of random variables

• Both the unknown and the observed information 
are described as random variables

• The unknown and the observed R.V. are 
Correlated.

• Estimation criteria:

–Minimize Bayesian Risk

–Minimize Mean Squared Error



Mean Squared Error

• Given an estimate X' of X (random variable), it is 
defined:

• Estimation error:

X =X-X'

• Mean squared error (Expected cost)

J = E [ XT X ]= E[ (X-X')T(X-X')]

MSE estimate: Minimize the mean squared error

• We want to select an estimate  X' such that J is 
minimized, using all the available information.



Mean Squared Error

• SITUATION 1:

The unique available information is :

fX (x), pdf of X

What is the optimal MSE estimate of  X?

• J = E [ XT X ]= E[ (X-X')T(X-X')]



Mean Squared Error

• SITUATION 1:

The unique available information is :

fX (x), pdf of X

What is the optimal MSE estimate of  X?

• J = E [ XT X ]= E[ (X-X')T(X-X')]

Answer:

X'=E[X]

What is the variance of this estimate?



Mean Squared Error

• SITUATION 2:

We are given the realization of another random variable Z, 
jointly distributed with the unknown X.

fXZ (x,z), joint pdf of X and Z

What is the optimal MSE estimate of  X?

• J = E [ XT X ]= E[ (X-X')T(X-X')]



Mean Squared Error

• SITUATION 2:

We are given the realization of another random variable Z, 
jointly distributed with the unknown X.

fXZ (x,z), joint pdf of X and Z

What is the optimal MSE estimate of  X?

• J = E [ XT X ]= E[ (X-X')T(X-X')]

Answer:

X'=E[X/Z]

The optimal Bayesian estimate is the conditional mean!!



Mean Squared Error

• The conditional pdf can be expressed as:

• And the conditional mean is obtained as:

f [X | Z] =
f(Z | X) f(Z)

f(X)

∫ x fX/Z(x/z)  dxE[X/Z] =



A property of any MMSE estimator is that for any

function g(Z) of the observed R.V. it holds that:

Mean Squared Error

E[g(Z) ( X - E [X | Z])T = 0

Then:

E[ ||X-E[X|Z]|| ≤ E[ ||X-g(Z)|| ]



Renewable generation forecast

• Point forecast:
• For the economic dispatch we are interested in the energy 

produced by a point source y at a future time t+k, given 
observations up to present time t.

• The optimal point estimate is the conditional mean:

y^(t+k|t) = E[Y(t+k)|Ω(t)]

• Where Ω(t) is the  information set at time t.
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Renewable generation forecast

Ω(t) contains all data and knowledge of the process up to time t.

For example:
• Variable realization for previous intervals: y(t), y(t-1), y(t-N)

• Correlated variables realizations (weather, generation at close locations,…)

• Note that , for a known joint pdf

y^(t+k|t) = E[Y(t+k)|Ω(t)]

Is a function of Ω(t)
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Renewable generation forecast
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Point estimate and observations of wind generation in western Denmark, 4th April 2007. 



Renewable generation forecast

Point estimates  DO NOT give information on uncertainty levels!

Better instruments can be derived:

• Quantile forecasts: q^(t+k, α) 

is the R.V. value such that:

P[ Y(t+k) ≤ q^(t+k, α) | Ω(t) ] = α
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Renewable generation forecast

3/05/2018
F. Ruiz - Control and Optimization in Smart-Grids                     

Politecnico di Torino
33

0.5 quantile estimate and observations of wind generation in western Denmark, 4th April 2007. 



• Prediction intervals: A prediction interval is a range of possible 
outcomes for the variable Y(t+k,β), given the present information 
Ω(t), for a level of probability (1- β):

P[ Y(t+k) ϵ I^(t+k, β) | Ω(t) ] = 1- β

• where

I^(t+k, α) = [q^(t+k, αmin); q^(t+k, αmax)]

• Note that the intervals are not unique for a given provability level.

• Central intervals are usually employed (centered on the median).

Renewable generation forecast
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Renewable generation forecast
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10% central intervals estimate and observations of wind generation in western Denmark, 4th April 2007. 



Scenario approach:

• A pdf can be represented by samples of the random variable.

Being Y a random process, a realization (sample) is a sequence:

Y^(t,j)=[y(t+1,j), y(t+2,j), …, y(t+k,j)],

where

y(t+i,j) is a sample of the pdf f(y(t+i)|Ω(t))

• As the number j of samples  grows, the scenarios are a precise 
representation of the pdf.

• This approach is useful  very in stochastic programming (more on this later)

Renewable generation forecast
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Renewable generation forecast
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Observations and 12 scenarios  of wind generation in western Denmark, 4th April 2007. 



Case study

Solar radiation estimation

• Isolated migro-grid

• Solar panels are the only energy source

• Next day generation is required to plan energy 
management:
• Battery charging scheduling

• Interruptible services

• Unserved load

• Limited computational resources
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Case Study

Available data:

• Solar irradiation (insolation) 
in Wh/m2.

• Hourly measurements 
between June 2008 and 
December 2014.

Required estimates:

• Insolation for the next 12 
hours (day)
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Case Study
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Monthly average of insolation for the complete data set.



Case study

Linear auto-regressive models:

• AR: 

y(t) = α0+ α1 y(t-1)+ α2 y(t-2)+ … + αp y(t-p)+ε(t)

• ARMA: 

y(t) = α0+ α1 y(t-1)+ α2 y(t-2)+ … + αp y(t-p) + 

ε(t)+θ1ε(t-1)+θ2 ε(t-2) + … + θq ε(t-q)

• ε(t) is assumed as white noise.
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Case study
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Data preprocessing:

• Eliminate outliers

• Fill missing data

• Select estimation set (70% of available data)

• Adjust data to solve least squares problem

• Estimate coefficients θi and αi.



Case Study

3/05/2018
F. Ruiz - Control and Optimization in Smart-Grids                     

Politecnico di Torino
43

One hour ahead forecast,  AR model, p=12, FIT=44%.



Case Study
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12 hours ahead forecast,  AR model, p=12, FIT=24%.



Case Study

• Linear estimators are optimal for joint Gaussian distributions. 

• In general, the conditional mean is a non-linear map, from available 
information to the optimal estimate. 

• It can be approximated as a non-linear function from data:

y^(t) = G( y(t-1), y(t-2), … , y(t-p))

• ANN are universal approximators:
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Case Study
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One hour ahead forecast,  ANN model, p=12, FIT=48%.



Case Study
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12 hours ahead forecast,  ANN model, p=12, FIT=32%.



Case Study

Model Horizon FIT (%) RMSE 
(Wh/m2)

AR 1 44 114

ANN 1 48 105

AR 12 24 162

ANN 12 32 144
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