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Course topics

• Session 1: Introduction to Power systems
• Context and motivation

• Power flow analysis

• Economic dispatch

• Session 2: Renewable sources
• Stochastic models of variable sources

• Dispatching random sources

• Session 3: Energy dispatch
• Risk-limiting dispatch

• Matlab session
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Course topics

• Session 4: Incentive-based demand response
• Modeling demand 
• Peak time rebates
• Contract design for demand response

• Session 5: Flexible loads
• Modeling flexibility
• Load dispatch
• Case study: Electric vehicles

• Session 6: Micro-grids
• Lean energy concept
• Joint generation and load dispatch
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Day-ahead Market

• Given a demand forecast Dk

• And a set of generators G1, G2, G3, …, GN

• What is the lowest cost generation program that supplies the 
demand?

This is the economic dispatch problem!
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Economic Dispatch
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Wind Energy in the Market

• Once a proper stochastic model of generation is available,

• How can a renewable generator participate in the market?

• It depends on the Dispatch model.

• Must-run units
• 100% renewable capacity usage

• Reliability problems

• Increase of reserves requirements

• Open market
• The risk of uncertainty is assumed by the generator
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Wind energy in an open market

Simplified market model:

The wind farm has a rated capacity, normalized to 1.

For given period [to, tf ] the owner of the wind farm knows the Cdf
(pdf) of generation.

w ϵ[0, 1] is the R.V. modeling wind power.
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Wind energy in the market

Market operation:

Generator is price taker 

Gen. participates in the day ahead market

Deviations are penalized

Imbalance prices are unknown, modeled as R.V.

Problem: How much energy shall the generator offer to the system 
operator, given his private information on wind power (pdf) and 
imbalance prices?
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Wind energy in the market

Economic balance of the Generator:

• Sold energy:

I = CT

• Negative imbalance:

෍
−
(𝐶,𝒘) = න

𝑡𝑜

𝑡𝑓

𝐶 − 𝑤(𝑡) +𝑑𝑡

• Positive imbalance:

෍
+
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𝑤 𝑡 − 𝐶 +𝑑𝑡
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Wind energy in the market

Economic balance of the generator:

ෑ(𝐶,𝑤, 𝑞, 𝜆) = 𝑝𝐼 − 𝑞෍
−
𝐶,𝒘 − 𝜆෍

+
(𝐶,𝒘)

• The only decision variable for the generator is C.

What is a good (optimal) strategy in this context?
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Wind energy in the market

What is a good (optimal) strategy in this context?

Maximize Π, using expected values for w, q and λ

Generate samples of R.V.  from their pdf and maximize for 
each case. Then ….

Maximize the expected value of Π

Minimize variance of Π

A joint criteria of previous performance measures
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Wind energy in the market

• The basic stochastic solution is to maximize the expected value of the 
generator profit:

𝐶∗ = 𝐄 ෑ(𝐶,𝑤, 𝑞, 𝜆)

With respect to w, q and λ.
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Wind energy in the market
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Optimal Contract:



Wind energy in the market
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Optimal Expected Profit:



Wind energy in the market
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Expected shortfall:

Expected surplus:



Wind energy in the market

 The generator behaves as inelastic supply  in regions M1 and M3

In region M2  the offered energy C* varies with p.

What does the expected shortfall tells to  the system operator?

Reserves: Generation units contracted to provide energy ONLY in case 
of unpredicted power deficits. Corrective actions!!
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Wind energy in the market

Self-supplied balancing service:

The generator may have a contract with a conventional 
generator (e.g. fast gas plant) that provides energy at a price 
qL>0.

The fast generator has a capacity L.

Assume qL < q, otherwise it is better to pay deviations to 
the SO.

For simplicity assume no penalty for positive imbalances, 
λ=0.
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Wind energy in the market

Self-supplied balancing service:

 New cost function:

• Where:
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Wind energy in the market

Self-supplied balancing service:

 The optimal contract C* in this case is given by the solution to:

If it exists.
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Wind energy in the market
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Wind energy in the market
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Risk-limited dispatch

Limitations of traditional dispatch:

It is a worst-case approach.

For wind generation, typically SO schedules reserves 
for 90% of installed capacity.

Inefficient solution!!!!
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Risk-limited dispatch

Traditional dispatch:

Cost function: minimize 
operational cost

Constraints:
Balance
Capacity

Risk: (N-1) criterion

Result: a lot of reserves 
scheduled!!!!

Risk-limited dispatch:
Cost function: Expected cost 

of suppling demand
Constraints:
Guaranteeing a probability 

level of not having a failure, 
imbalance, excess Tx
capacity,…

Limited-risk: pf < (1-α)
Result: Reduced reserves, 

reduced prices!!!!
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Risk-limited dispatch
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Intra-day markets: Energy is traded in multiple periods, each time 
closer to the delivery time.



Risk-limited dispatch

• Several markets

• Closer to the dispatch time:
• Energy becomes more 

expensive
• Uncertainty reduces
• SO can buy or sell blocks 

of energy.
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Risk-limited dispatch

• First market, at time t-Tσ :

• Decision: generation 𝑢𝜎
• Constraint: Probability of 

satisfying demand and 
operational constraints is 
higher than 𝛼

NO worst-case, there is a 
limited risk of failure!!!

Day-ahead
schedule

Energy delivery
time

tt-Tσ

𝑚𝑖𝑛 𝐽(𝑢𝜎)
s.t.

𝑝𝑟 𝑓 𝑢𝜎 = 𝐷 𝑡 ; 𝑔 𝑢𝜎 ≤ 0|𝑦𝑡−𝑇𝜎 ≥ 𝛼

Intra-day
market

t-Tρ 𝑢𝜌𝑢𝜌
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Risk-limited dispatch

• Second market, at time t-Tρ:

• Decision: generation 𝑢𝜌
• Constraint: Probability of 

satisfying demand and 
operational constraints is 
higher than 𝛼′

NO worst-case, there is a 
limited risk of failure!!!

Day-ahead
schedule

Energy delivery
time

tt-Tσ

𝑚𝑖𝑛 𝐽(𝑢𝜌)

s.t.

𝑝𝑟
𝑓 𝑢𝜎 + 𝑢𝜌 = 𝐷 𝑡 ;

𝑔 𝑢𝜎 + 𝑢𝜌 ≤ 0;
|𝑦𝑡−𝑇𝜌 ≥ 𝛼′

Intra-day
market

t-Tρ 𝑢𝜌𝑢𝜌
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Risk-limited dispatch

• Real-time market, at time

t-Tε :

• Decision: generation 𝑢𝜀
• Constraint: Must satisfy 

balance and operational
constraints.

Day-ahead
schedule

Energy delivery
time

tt-Tσ

𝑚𝑖𝑛 𝐽(𝑢𝜀)
s.t.

𝑝𝑟
𝑓 𝑢𝜎 + 𝑢𝜌 + 𝑢𝜀𝜀

= 𝐷 𝑡 ;

𝑔 𝑢𝜎 + 𝑢𝜌 + 𝑢𝜀 ≤ 0;
|𝑦𝑡−𝑇𝜀 = 1

Intra-day
market

t-Tρ 𝑢𝜌𝑢𝜌

Real-time
market

t-Tε



Risk-limited dispatch

• It can be generalized to m markets:
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Risk-limited dispatch
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Risk
function!!



Risk-limited dispatch

It is a stochastic programming problem with m stages

Agent (system operator) makes decisions in sequence with the 
available information on R.V.

Optimal policies are solved backwards in time.
First: solve the last decision, given previous actions and remaining uncertainty

Second: solve the previous decision, given previous actions AND Optimal 
Policy for the last decision

…

Last: solve the first decision, given Optimal Policies for the decision to come
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Risk-limited dispatch
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 Decision tree for
m=3.

 R.V. are modeled
by scenarios (H,L)

 Solution is given
by thesholds

 Buy or sell form



Risk-limited dispatch

3/05/2018
F. Ruiz - Control and Optimization in Smart-Grids                     

Politecnico di Torino
33

 Performance 
comparison

 m=2 vs m=10
 d: demand level.
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