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Course topics

* Session 1: Introduction to Power systems
* Context and motivation
* Power flow analysis
e Economic dispatch

e Session 2: Renewable sources
e Stochastic models of variable sources
* Dispatching random sources

* Session 3: Energy dispatch
* Risk-limiting dispatch
* Matlab session



Course topics

* Session 4: Incentive-based demand response
 Modeling demand
* Peak time rebates
e Contract design for demand response

e Session 5: Flexible loads
* Modeling flexibility
* Load dispatch
e Case study: Electric vehicles

* Session 6: Micro-grids
* Lean energy concept
* Joint generation and load dispatch
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.~ Demand Side Management \‘ﬁmﬁﬁ'

» New paradigm in grid operation
» Active consumers are responsible of grid balance
»|CT-based

L2\
- Power and Information
6006 0% Bi-directional flow ‘
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Demand Side Management

DEMAND SIDE MANAGEMENT

DEMAND RESPONSE ENERGY EFICIENCY

PRICE-INCENTIVE DIRECT LOAD EFFICIENT EFFICIENT
BASED MANAGEMENT APPLIANCES BEHAVIOR
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- Demand Response

Photovoltaic Generation System Operator Conventional Generation

Objective: to
maintain the energy
balance.

e Demand response
takes advantage of Flexible Load J

Flexible Load
Scheduling

flexible loads. Al

* To provide ancillary
services to the
electrical grid.

Electric Vehicles Water Booster Pressure System
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Flexible loads
What is a flexible load?

Flexible load: A load is said to be flexible if its power consumption can
be modified with respect to an scheduled demand.

* |Interruptible: Stop consumption
e Deferrable: Shift consumption

Baseline: Expected energy consumption of a given load when it does
not provide any flexible service.

e Counterfactual model
 Critical information for operation and rewards
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~ Flexible loads RGE

* Is it possible to modify the power consumption of the following loads,
WITHOUT heavily affecting the service they offer?

Lighting systems

* Interruptible
or
» Deferrable
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Flexible loads

* Is it possible to modify the power consumption of the following loads,
WITHOUT heavily affecting the service they offer?

Electric Vehicles | \*

* Interruptible
or
» Deferrable
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 Flexible loads

* Is it possible to modify the power consumption of the following loads,
WITHOUT heavily affecting the service they offer?

—
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Pool Pumping Systems

* Interruptible
or
» Deferrable
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 Flexible loads ETr T2

* Is it possible to modify the power consumption of the following loads,
WITHOUT heavily affecting the service they offer?

Thermostatically controlled Loads

* Interruptible
or
» Deferrable
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Problem Context

Renewable Sources Uncertainty

l

Imbalance between load and generation



Problem Context

Renewable Sources Uncertainty
Imbalance between load and generation
DR - Ancillary services

Dispatchable Loads



Problem Context

Renewable Sources Uncertainty
Imbalance between load and generation
DR - Ancillary services

Dispatchable Loads

Electric Thermostatically Case Study
Vehicles Controlled Loads (WBPS)
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* Plenty of buildings are
using these hydraulic

systems.

* They are potentially

useful to offer energetic

services.

Water Booster Pressure System &

Pressure
tank

Pressure
switch

Centrifugal

F. Ruiz - Control and Optimization in Smart-Grids
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Preliminary results

Water Booster Pressure System (WBPS)

* Plenty of buildings are using these hydraulic

systems.

* They are potentially useful to offer energetic

services.

e Variables:

Input > Qi (t)
Output &> Py (t)
State > Qrq(t)

3/05/2018

Pressure

tank

Pressure
switch
Qout
Net |
Qin

Centrifugal

e
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Dynamic Model

* WBPS Dynamics: Vi(t) = Qra(t) = Qin(t) = Qou ()

_ Vo
pair(t) — (ppr +pa) VT — Vf(t) Pa
(Pair(t) = pa) * Qin(t)
PC‘p(t) — Cull
( QC;O Zf patr(kAt) i Pmin
Q’Ln(kAt) — < Qtn((k - 1)At) Zf Pmin < Pair (kAt) < Pmax
\ 0 Zf patr(kAt) Z Pmax

* Minimum pressure in the highest taps
Pmin = pgh - Ptap

F. Ruiz - Control and Optimization in Smart-Grids
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~. Experimental data acquisition LRy

T ".,_ ‘

They were recorded

from the WBPS of a

6-floor building of
labs and offices.

Pcp and Qyye, Ts = 10s
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Simulation

-~

—» Centrifugal Pump <€

Qcplgpm]

Hydraulic
Source 1

\1

Qout|L/ 5]

by

é

Bar)|

Pressurized Pair [

Tank
AQcy — Flow - ONIOFF
Supply Control
o
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It is performed in
MATLAB®
software using
Simulink



~ Validation B

Power consumed in the experimental data (blue) and simulated (red) pump.

1000 . . : : :
3 M
o 500¢ m
g k | il % / /J
O
o
0 I I I
15:30 1545 16:00 16:15 16:30 16:45 17:00
Time [h]
Validation Energy- Tlme.the
consumption pump is ON The energy error
Experimental 148,6 Wh 29 min 20 s is 2’42%.
Simulation 145 Wh 30minO0s
/0512018 O e o 20



How would the power consumption be altered
by varying pressures p.,;,and v, ?

400

300

Jower [W]
N
[ o}
(@)
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Pressure (Bar)

Variable | Min | Medium A | Normal | Medium B | M-
Pmin 1.31 1.41 1.52
Pmax 2.41 2.65 2.90

Frequency
o
o
Y

o
(on)
N

]
1.85 ’??
ra\o\e?? |

2.5

2
3.5
3 1.5

P, ., [Barl Prin [BE1]
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Analysis of Energy Services

Power consumption can be altered by varying
pressures D,,in and Py

* Pressure in ptqy is reduced 25%.
* Water supply does not stop at any moment.

The average power
decrease is 27%.



= Analysis of Energy Services B
s 50 A\ S
45 .
40
¥ 35
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= 30
S 25
§ 20
E 15
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5
. m i B B
261 522 783 1044 1305 1565 1826 2087 2348 2609
Time (s) in cyclizing again
Approximately 70% of the systems are delayed less
than 540 s (9 min) for cycling again.
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Analysis of Energy Services

Power consumption can be 45
altered by varying pressures 40
Pmin and Pmax- g zz
5 25
* Pressure in pygy, is reduced g 2
25% <
O' iR R I

. 5

Water supply does not stop . - I | B

at any moment. 261 522 783 1044 1305 1565 1826 2087 2348 2609

Time (s) in cyclizing again
The average power Approximately 70% of the systems

decrease is 27%. are delayed Iess.than 51.10 s (9 min)
| for cycling again.

\ 4

What service can be offered to the SO?

F. Ruiz - Control and Optimization in Smart-Grids
Politecnico di Torino
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According to the energy services g~y
usually employed by SO, which service v
can a WBPS provide?

» According to the FERC (Federal Energy Regulatory Commission)
definitions of reserves services are:

. Time response L .
Reserve service . Maintained time
_ (Within) -

Regulation reserve 15-30s 10 or 15 min
Spinning reserve 10 min 105 min
Non-spinning reserve 10 min 105 min
Replacement reserve 30 min 105 min
Valuable economically for SO
Non-spinning reserve 2 to 8 times
Replacement reserve 2 to 20 times
F. Ruiz - Control and Optimization in Smart-Grids
3/05/2018 Politecnico di Torino 25




Aggregator Proposal

* Control strategy to provide Spinning reserve service.

CONTROL PLANT

Recovery

ET Pr Power
reduction
calculation calculation

Energy

—> — 1
/ PI Controller N

A\

Controlled variable: y, a power reduction of the set of WBPSs.

Manipulated variable: B, number of systems that should be enabled or
disabled. Each system receives a binary signal.

» Reference signal: r, power reduction sent by the SO.

A\

3/05/2018 F. Ruiz - Control a'nd Optimi'zatic?n in Smart-Grids
Politecnico di Torino



Aggregator Proposal

e Control strategy to provide Spinning reserve service.

CONTROL PLANT

ET _PT Power
Energy reduction
calculation calculation

Recovery

PI Controller =

» Controlled variable: y, a power reduction of the set of WBPSs.

» Manipulated variable: B, number of systems that should be enabled or
disabled. Each system receives a binary signal.

» Reference signal: r, power reduction sent by the SO.

3/05/2018 F. Ruiz - Control a.nd Optimi.zatign in Smart-Grids
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Aggregator Proposal

—
(00]

» A Gain-Scheduled (GS)
controlled is proposed.

Power [KW]
N RO

N
|

»The aggregator follow
time-varying reduction 10
signals (red) requested
by the system operator.

100

Amount of Systems




Problem Context

Renewable Sources Uncertainty
Imbalance between load and generation
DR - Ancillary services

Dispatchable Loads

Thermostatically Electric

A Controlled Loads Vehicles



Aggregator for an Electric Vehicle Charging Station

, EV batteries can behave as flexible loads.
Bilateral Contract Power Grid _ _
Prices C * Varying the charging power.

| Aggregator Ul The EV need to be charged up to a required SoC.
.’.S-T?-gj """ 3 charging strategies are analyzed

EYA{’P  Standard
AN : . . .
T E{ pereine Smm” * MPC with complete information

E[;l RS \
@ X! \ L * MPC with uncertainty in the EV arrival SoC

Chargers The aggregator (MPC) decides the power to charge EV

g "‘3 i u
VL 2 Songers @i ugl'
i depending on:
& P g
i I'l{

* Energy price
* Time spent by EVs at the charging station

k

F. Ruiz - Control and Optimization in Smart-Grids
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Aggregator for an Electr|c Vehicle Charging Station

Bilateral Contract

Prices

3/05/2018

-
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-
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C,,

Chargers
Schedule

How can we model the SoC evolution (dynamic
model)?

* What happens when a car arrives or leaves the
Power Gric?é Charging station?

[T * Do we need to consider the discharge process
Aggregator R while the car moves around?

* NOVEL APPROACH:

e Siation * The system that evolves in time is the Charger

a2 i{ NOT the Car.
: * A charger can handle multiple cars in one day

Ek iu
@i k-{; * The SoC of the plugged car evolves with the
i il{

battery dynamics

* When a car leaves, the charger can not act as
a flexible load

= * When a car arrives, the system state “jumps”
to the car SoC.

F. Ruiz - Control and Optimization in Smart-Grids
Politecnico di Torino
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Aggregator for an Electric Vehicle Charging Station

* Economic dispatch problem e Dealing with Uncertainty:
taking into account chargers:  The optimal power injection
. A?‘i (C’ki“i) sequence u(l),... u(N)., d'oes_not
Z =\ o take into account variation in
S.t. vit Atdl i Bl =1, k#d arrival times, initial SoC, ....
Thi1 = { -5’06‘5 :I gi - (1} k=a * Afeedback strategy is needed to

counteract uncertain events.
e MPC solution!

rh = 5'0(.“‘_3;
0 S ‘ii < 'Tina;r.
0 < '“,zlf_ < Umaz
VEk=1,2...N, i=12...n j=12, ../
i _ 1 if 2% has an EV connected at k
k= 0 if 2% has not an EV connected at %



Aggregator for an Electric Vehicle Charging Station

* Economic dispatch problem taking
into account chargers: dynamics

N n
. _ -y )
min J = At E C'y, E s,
k=1 i=1

s.t. | Tt —Af—u}; if Ei =1, k# (13:
T =< SoC? if Ep=1 k=d
0 it El =0
rh = 5'0(.“‘_3;

-
max

0 < ii

N\

< “i«_ < Umax
k=12 N, i=12..n j=1.2 .1

i1 if
Ek{ 0 if

2* has an EV connected at k&
7' has not an EV connected at %

e MPC solution:

* Optimization problem solved at every

sample time At.

* Only the first simple of the optimal
power injection sequence u(1),... u(N)

is applied.

* The SoC of connected vehicles is
MEASURED at t+ At, and

* Optimization problem is solved again.



Aggregator for an Electric Vehicle Charging Station

Hourly price of electricity.

Standard charging

02— —T1 T T T T T T |——MPC full information
T R R R s e MPC uncertainty in SoC,|
é 006 ...................................................................................
. . . . Q@
e Economic dispatch problem taking into account £ 008 e T e
chargers dynamics - A R S S -
O 4 6 8 10 12 11 1 18 20 22 2
Time [h]
. N n . Power delivered by the charger 1.
min J = At Z C Z wuy, 00— T T T T T
! k=1 i=1 SB[t S S RSTIIE — TR
S.L. | 41-'39 *.At“}; if i =1, k#d gm— ------- R R & ‘I-J ---------------------- R Fro S
~ » . p ; ) : =} B ! :
Q;CH_ if,o(é? if 'i:zl- fe = - T o O T I R O S (RS [FE ER N
0 if Ei=0 0 . _ i ' i .
_ k 2 4 6 8 10 12 14 16 18 20 22 24
ry; = SoCY, Time [h]
) ] Charger 1 behavior for the different charging strategies.
- - T T T T T T T T T T T
0< o < T T L
0 < U} < Umag g
VE=1,2...N, i=12...n j=1,2..1( %)
w
>
(i}
2% has an EV connected at & | BRI

o[ 1 if
Ek{o if

3/05/2018

2* has not an EV connected at A

Time [h]
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EV Charger as Flexible Load

Flexibility: Power capacity that the charging station can deviate from the
optimal scheduling, WITHOUT violating constraints.

A

= .

= A, Farax
=) Area of flexibility

gc Ui max

S .

< Li,Farrn
£a U ,IMax

;IT?:,(LJ‘

>

- d 7.
(1.-3 m dj

Time [k|



EV Charger as Flexible Load

Flexibility: Power capacity that the charging station can deviate from the
optimal scheduling, WITHOUT violating constraints.

F[ F[ T
A F. = E Up;i " — Downg
E Li, Farax
= Area of flexibility
&3 Ui max Umax — U4k it 0< Li k < Li,mazx & k< Kﬂl
; ;i.F\,IIN [/TpZFfi:ex - 0 it 0< Li,k < Li,mazx & k > dm
= Ui,mazx | 0 if Lik = Ti,mazx O Ti |k = 0
Li a, )
—Uq k if 0< Tik < Ti,maz

&
Fl . 1.
a; dm dj > DO’&LTLZ ;‘"ex - 0 it 0 < :C'iak < Li,max &



EV Charger as Flexible Load

Flexibility.
T

Flexibility of a dispatch:

» Evaluated after the
dispatch problem is solved

>t is not symmetric ‘ [N N A Y SN . Y Y A A

2 4 6 8 10 12 14 16 18 20 22 24

. . . Time [h]

»Varies with prices 300 Fexiilty.
¢ Can we modify the dispatch 2= S— 1
to guarantee some flexibility — £ 1
capacity? 2 LLU -
100 — L _
50 - 41—,7 HHT

0 ’\_I-_H,_LI | | | L | | | |
2 4 6 8 10 12 14 16 18 20 22 24
Time [h]
3/05/2018 F. Ruiz - Control and Optimization in Smart-Grids
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Maximizing flexibility

Economic MPC with combined e Guaranteed final SOC

objective: * Balance between Min charging cost
and Ancillary service return

N n n
' Jp = At C e — b F;

n
Tigo + Atug g i Eip =1, a; <k <d; Fj, = E Upf;iem — Downf}f‘“
S.1. X k+1 — SOOj,(Lj if Ei,k‘ = 1, k = a/j i=1
0 it E;p=0
_ her
:cq;ydj = SOCij Whe <,
Fi,k < Uq,k < Ei,k(ui,mam - F?,k) Umaz — Uik I 0 <X 0 < T mar & k< dm
Up/ic“ =4 0 it 0< ) <Timar & k> dm
0= Fi,k < Wi max 0 it @ g = X maz Or T =0
0 S L, k S Limax
7 7 . . — U4k it 0< Li,k < Zi,max & k <dm
Vk=12,...N, i=1,2,..n j=1,2,....¢ Down!}* = ¢ 0 i 0 <2 < Timaz & k> dm
n
F, = Z Fi = Up{ " = Down! ;"
i=1 . N L
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Case Study

* 10 EV y 3 Chargers

EV; 1| 2 3 4 5 6 7 9 | 10
a; 1 5 8 11 (11 (12 | 15| 16 | 19 | 19
d; S| 10 | 13 [ 15 [ 13 | 15 | 20 | 1 22 | 21
Charger # | 1 2 1 2 3 - | 2 2 3

Charge Strategy Cost [$] | Savings [%]
Minimum Time 46.73 -
Economic MPC 34.24 26.74
MPC - Flexibility Maximization 43.18 7.61

—.0.12 ‘ ‘ ——FP,
i
§0.09— w‘j r ey
ao.osf .
8003} .
n‘ 0 L L L L L L L L L L L
2 4 6 8 10 12 14 16 18 20 22 24
Time [h]
12 | MinTime | _(b)
E MPC
=, 8 MPC Flex ]
a [
o
0 | | 1 | | | 1 |
2 4 6 8 10 12 14 16 18 20 22 24
Time [h]
g0 MinTime | ()
= MPC
X, 60 -|— MPC Flex 7
3
o 30 [ |
>
Lu 0 1 1 L L L | L
2 4 12 14 16 18 20 22 24
Time [h]
d
15 (‘)
3
= 3 = Ty
e s i R
ﬂ- Ll | I
_15 1 1 1 1 1 1 1 1 1 1 1
2 4 6 8 10 12 14 16 18 20 22 24

Time [h]



:*Min Time
200 MPC
Case Study S
@ 100
2
o 50
0
o
100 EV y 25 Chargers 18
—= MPC
E 12 - |— MPC Flex
3.
g 6
Charge Strategy Cost [$] | Savings [%] 0
Minimum Time 454.35 -
Economic MPC 356.19 21.61 | |
MPC - Flexibility Maximization | 392.3% 13.64 2007
3
g
c
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. Case Stu RFE
N NP
140 . . EIMPC with full information
[TIMPC with uncertainty in SoC
¢ A |V|0nte Power delivered by the station. 120 1
Carlo &
simulationis =
=, E ol
performed - 8
: : 1 D
with 1000 3 g
realizations. 2 4w
20t
* There are — . oriesaton. % 6 18 2 2 24 26 28
1 andard charging ; ; ; ; ; Savings [%]

used 25
chargers and
100 EVs
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— MPC full information

| ——— MPC uncertainty in SoC

Cost [$/kWh]

2]

F. Ruiz - Control and Optimization in Smart-Grids
Politecnico di Torino

Average

saving:
21%
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 Case Study g

1000 iterations, randomizing EV arrival and departure time and Arrival SoC.

180 | | | 150 .
EmpPc EvPC
160 |
[ IMPC Flex [ IMPC Flex
., 140
s g
5 120 2 100
T 100 =
5 o
> 80 ‘5
, £ e 3 :
Price 1 = E 50 Price 2
40 =
20
0
6 8 10 12 14 16 18 0
Savings [%] 5 10 15 20 25 30
Savings [%]
Charge Strategy | Average | Minimum | Average Maximum Charge Strategy | Average | Minimum | Average Maximum
Cost [$] Saving Savings Saving Cost [$] Saving Savings Saving
Minimum Time 456.07 - - - Minimum Time 433.80 - - -
Economic MPC 394.06 9.80% 13.59% 17.91% Economic MPC 337.67 16.57% 22.15% 28.73%
MPC - Flex Max 409.51 7.01% 10.20% 13.27% MPC - Flex Max 374.75 9.14% 13.60% 18.63%
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