

CONTROL AND OPTIMIZATION IN SMART-GRIDS

Fredy Ruiz Ph.D.

Pontificia Universidad Javeriana, Colombia

Visiting Profesor - Politecnico di Torino

ruizf@javeriana.edu.co

May, 2018

Course topics

- Session 1: Introduction to Power systems
 - Context and motivation
 - Power flow analysis
 - Economic dispatch
- Session 2: Renewable sources
 - Stochastic models of variable sources
 - Dispatching random sources
- Session 3: Energy dispatch
 - Risk-limiting dispatch
 - Matlab session

Course topics

- Session 4: Incentive-based demand response
 - Modeling demand
 - Peak time rebates
 - Contract design for demand response
- Session 5: Flexible loads
 - Modeling flexibility
 - Load dispatch
 - Case study: Electric vehicles
- Session 6: Micro-grids
 - Lean energy concept
 - Joint generation and load dispatch

Demand Side Management

- > New paradigm in grid operation
- Active consumers are responsible of grid balance
- ➤ICT-based

PRO-SUMER

Demand Side Management

F. Ruiz - Control and Optimization in Smart-Grids

Demand Response

Objective: to maintain the energy balance.

- Demand response takes advantage of flexible loads.
- To provide ancillary services to the electrical grid.

What is a flexible load?

Flexible load: A load is said to be flexible if its power consumption can be modified with respect to an scheduled demand.

- Interruptible: Stop consumption
- Deferrable: Shift consumption

Baseline: Expected energy consumption of a given load when it does not provide any flexible service.

- Counterfactual model
- Critical information for operation and rewards

• Is it possible to modify the power consumption of the following loads, WITHOUT heavily affecting the service they offer?

Lighting systems

- Interruptible
 - or
- Deferrable

• Is it possible to modify the power consumption of the following loads, WITHOUT heavily affecting the service they offer?

Electric Vehicles

- Interruptible
 - or
- Deferrable

• Is it possible to modify the power consumption of the following loads, WITHOUT heavily affecting the service they offer?

Pool Pumping Systems

- Interruptible
 - or
- Deferrable

• Is it possible to modify the power consumption of the following loads, WITHOUT heavily affecting the service they offer?

Thermostatically controlled Loads

- Interruptible
 - or
- Deferrable

Problem Context

CONCODER STORE

Imbalance between load and generation

Problem Context

Politecnico di Torino

Water Booster Pressure System

- Plenty of buildings are using these hydraulic systems.
- They are potentially useful to offer energetic services.

Preliminary results Water Booster Pressure System (WBPS)

- Plenty of buildings are using these hydraulic systems.
- They are potentially useful to offer energetic services.
 - Variables:

Input $\rightarrow Q_{in}(t)$ Output $\rightarrow P_{Cp}(t)$ State $\rightarrow Q_{Ta}(t)$

Dynamic Model

• WBPS Dynamics:

$$\dot{V}_f(t) = Q_{Ta}(t) = Q_{in}(t) - Q_{out}(t)$$
$$p_{air}(t) = (p_{pr} + p_a) \frac{V_T}{V_T - V_f(t)} - p_a$$
$$P_{Cp}(t) = \frac{(p_{air}(t) - p_a) * Q_{in}(t)}{c_u \eta}$$

$$Q_{in}(k\Delta t) = \begin{cases} Q_{Cp} & if \quad p_{air}(k\Delta t) \le p_{min} \\ Q_{in}((k-1)\Delta t) & if \quad p_{min} < p_{air}(k\Delta t) < p_{max} \\ 0 & if \quad p_{air}(k\Delta t) \ge p_{max} \end{cases}$$

• Minimum pressure in the highest taps

$$p_{min} > \rho gh + p_{tap}$$

Experimental data acquisition

They were recorded from the WBPS of a 6-floor building of labs and offices.

$$P_{Cp}$$
 and Q_{out} , $T_s = 10s$

F. Ruiz - Control and Optimization in Smart-Grids Politecnico di Torino

Validation

Power consumed in the experimental data (blue) and simulated (red) pump.

20

F. Ruiz - Control and Optimization in Smart-Grids Politecnico di Torino

Analysis of Energy Services

Power consumption can be altered by varying pressures p_{min} and p_{max} .

- Pressure in p_{tap} is reduced 25%.
- Water supply does not stop at any moment.

The average power decrease is 27%.

Approximately 70% of the systems are delayed less than 540 s (9 min) for cycling again.

Analysis of Energy Services

6

Power consumption can be altered by varying pressures p_{min} and p_{max} .

- Pressure in p_{tap} is reduced 25%.
- Water supply does not stop at any moment.

The average power

decrease is 27%.

Approximately 70% of the systems are delayed less than 540 s (9 min) for cycling again.

What service can be offered to the SO?

According to the energy services usually employed by SO, which service can a WBPS provide?

• According to the FERC (Federal Energy Regulatory Commission) definitions of reserves services are:

Reserve service	Time response (Within)	Mai	ntained time			
Regulation reserve	15 - 30 s	10) or 15 min			
Spinning reserve	10 min		105 min			
Non-spinning reserve	10 min		105 min			
Replacement reserve	30 min		105 min			
			Reserve serviceNon-spinning reserveReplacement reserve		Valuable economically for SO	
					2 to 8 times	
					2 to 20 times	
F. Ruiz - Control and Optimization in Smart-Grids						

Aggregator Proposal

• Control strategy to provide Spinning reserve service.

- \succ <u>Controlled variable</u>: *y*, a power reduction of the set of WBPSs.
- > <u>Manipulated variable</u>: β , number of systems that should be enabled or disabled. Each system receives a binary signal.
- \blacktriangleright <u>Reference signal</u>: r, power reduction sent by the SO.

Aggregator Proposal

• Control strategy to provide Spinning reserve service.

- \succ <u>Controlled variable</u>: *y*, a power reduction of the set of WBPSs.
- > <u>Manipulated variable</u>: β , number of systems that should be enabled or disabled. Each system receives a binary signal.
- \blacktriangleright <u>Reference signal</u>: r, power reduction sent by the SO.

Aggregator Proposal

➤A Gain-Scheduled (GS) controlled is proposed.

The aggregator follow time-varying reduction signals (red) requested by the system operator.

Politecnico di Torino

- EV batteries can behave as flexible loads.
 - Varying the charging power.
- The EV need to be charged up to a required SoC.
- 3 charging strategies are analyzed
 - Standard
 - MPC with complete information
 - MPC with uncertainty in the EV arrival SoC
- The aggregator (MPC) decides the power to charge EV depending on:
 - Energy price
 - Time spent by EVs at the charging station

3/05/2018

- How can we model the SoC evolution (dynamic model)?
- What happens when a car arrives or leaves the Charging station?
- Do we need to consider the discharge process while the car moves around?
- NOVEL APPROACH:
 - The system that evolves in time is the Charger NOT the Car.
 - A charger can handle multiple cars in one day
 - The SoC of the plugged car evolves with the battery dynamics
 - When a car leaves, the charger can not act as a flexible load
 - When a car arrives, the system state "jumps" to the car SoC.

• Economic dispatch problem taking into account chargers: $J = \Delta t \sum_{k=1}^{N} \left(C_k \sum_{k=1}^{n} u_k^i \right)$

 \min

s.t.

$$\begin{aligned}
& k=1 \quad i=1 \quad j \\
& i=1 \quad j \\
\\
& sit.
\end{aligned}$$

$$\begin{aligned}
& x_{k+1}^{i} = \begin{cases} x_{k}^{i} + \Delta t u_{k}^{i} & \text{if } E_{k}^{i} = 1, \quad k \neq a^{j} \\
& SoC_{0}^{j} & \text{if } E_{k}^{i} = 1, \quad k = a^{j} \\
& 0 & \text{if } E_{k}^{i} = 0 \\
\end{aligned}$$

$$\begin{aligned}
& x_{dj}^{i} = SoC_{F}^{j} \\
& 0 \leq x_{k}^{i} \leq x_{max}^{i} \\
& 0 \leq u_{k}^{i} \leq u_{max} \\
& \forall k = 1, 2, ..., N, \quad i = 1, 2, ..., n \quad j = 1, 2, ..., \ell \\
\end{aligned}$$

$$\begin{aligned}
& E_{k}^{i} = \begin{cases} 1 & \text{if } x^{i} \text{ has an EV connected at } k \\
& 0 & \text{if } x^{i} \text{ has not an EV connected at } k \end{cases}$$

- Dealing with Uncertainty:
 - The optimal power injection sequence u(1),... u(N), does not take into account variation in arrival times, initial SoC,
 - A feedback strategy is needed to counteract uncertain events.
 - MPC solution!

• Economic dispatch problem taking into account chargers: dynamics

$$\begin{split} \min_{u} & J = \Delta t \sum_{k=1}^{N} \left(C_{k} \sum_{i=1}^{n} u_{k}^{i} \right) \\ \text{s.t.} & x_{k+1}^{i} = \begin{cases} x_{k}^{i} + \Delta t u_{k}^{i} & \text{if } E_{k}^{i} = 1, \quad k \neq a^{j} \\ SoC_{0}^{j} & \text{if } E_{k}^{i} = 1, \quad k = a^{j} \\ 0 & \text{if } E_{k}^{i} = 0 \end{cases} \\ x_{dj}^{i} = SoC_{F}^{j} \\ & 0 \leq x_{k}^{i} \leq x_{max}^{i} \\ & 0 \leq u_{k}^{i} \leq u_{max} \\ & \forall k = 1, 2, ..., N, \quad i = 1, 2, ..., n \quad j = 1, 2, ..., \ell \end{cases} \\ E_{k}^{i} = \begin{cases} 1 & \text{if } x^{i} \text{ has an EV connected at } k \\ 0 & \text{if } x^{i} \text{ has not an EV connected at } k \end{cases} \end{split}$$

- MPC solution:
 - Optimization problem solved at every sample time *∆t*.
 - Only the first simple of the optimal power injection sequence u(1),... u(N) is applied.
 - The SoC of connected vehicles is MEASURED at $t + \Delta t$, and
 - Optimization problem is solved again.

F. Ruiz - Control and Optimization in Smart-Grids Politecnico di Torino

• Economic dispatch problem taking into account chargers dynamics

$$\begin{split} \min_{u} & J = \Delta t \sum_{k=1}^{N} \left(C_{k} \sum_{i=1}^{n} u_{k}^{i} \right) \\ \text{s.t.} & x_{k+1}^{i} = \begin{cases} x_{k}^{i} + \Delta t u_{k}^{i} & \text{if } E_{k}^{i} = 1, \quad k \neq a^{j} \\ SoC_{0}^{j} & \text{if } E_{k}^{i} = 1, \quad k = a^{j} \\ 0 & \text{if } E_{k}^{i} = 0 \end{cases} \\ x_{dj}^{i} = SoC_{F}^{j} \\ & 0 \leq x_{k}^{i} \leq x_{max}^{i} \\ & 0 \leq u_{k}^{i} \leq u_{max} \\ & \forall \ k = 1, 2, ..., N, \quad i = 1, 2, ..., n \quad j = 1, 2, ..., \ell \end{split}$$

 $E_k^i = \begin{cases} 1 & \text{if } x^i \text{ has an EV connected at } k \\ 0 & \text{if } x^i \text{ has not an EV connected at } k \\ \frac{3}{05}{2018} & \text{F. Ruiz - Control} \end{cases}$

Politecnico di Torino

100

EV Charger as Flexible Load

Flexibility: Power capacity that the charging station can deviate from the optimal scheduling, WITHOUT violating constraints.

F. Ruiz - Control and Optimization in Smart-Grids Politecnico di Torino

EV Charger as Flexible Load

Flexibility: Power capacity that the charging station can deviate from the optimal scheduling, WITHOUT violating constraints.

F. Ruiz - Control and Optimization in Smart-Grids Politecnico di Torino

EV Charger as Flexible Load

Flexibility of a dispatch:

- Evaluated after the dispatch problem is solved
- ≻It is not symmetric
- ➤Varies with prices

¿Can we modify the dispatch to guarantee some flexibility capacity?

Politecnico di Torino

Maximizing flexibility

Economic MPC with combined objective:

$$\begin{split} \min_{u,F} & J_F = \Delta t \sum_{k=1}^N \left(C_k \sum_{i=1}^n u_{i,k} - P_k \sum_{i=1}^n F_{i,k} \right) \\ \text{s.t.} & x_{i,k+1} = \begin{cases} x_{i,k} + \Delta t u_{i,k} & \text{if } E_{i,k} = 1, \ a_j < k < d_j \\ SoC_{j,a_j} & \text{if } E_{i,k} = 1, \ k = a_j \\ 0 & \text{if } E_{i,k} = 0 \end{cases} \\ x_{i,d_j} = SoC_{j,F} \\ F_{i,k} \le u_{i,k} \le E_{i,k} (u_{i,max} - F_{i,k}) \\ 0 \le F_{i,k} \le u_{i,max} \\ 0 \le x_{i,k} \le x_{i,max} \\ \forall \ k = 1, 2, ..., N, \quad i = 1, 2, ..., n \quad j = 1, 2, ..., \ell \end{split}$$

$$F_k = \sum_{i=1}^n F_{i,k} = Up_{i,k}^{Flex} = Down_{i,k}^{Flex}$$

- Guaranteed final SOC
- Balance between Min charging cost and Ancillary service return

$$F_k = \sum_{i=1}^n Up_{i,k}^{Flex} - Down_{i,k}^{Flex}$$

Where,

$$Up_{i,k}^{Flex} = \begin{cases} u_{max} - u_{i,k} & \text{if } 0 < x_{i,k} < x_{i,max} \& k < d_m \\ 0 & \text{if } 0 < x_{i,k} < x_{i,max} \& k \ge d_m \\ 0 & \text{if } x_{i,k} = x_{i,max} \text{ or } x_{i,k} = 0 \end{cases}$$
$$Down_{i,k}^{Flex} = \begin{cases} -u_{i,k} & \text{if } 0 < x_{i,k} < x_{i,max} \& k < d_m \\ 0 & \text{if } 0 < x_{i,k} < x_{i,max} \& k \ge d_m \\ 0 & \text{if } x_{i,k} = x_{i,max} \text{ or } x_{i,k} = 0 \end{cases}$$

3/05/2018

F. Ruiz - Control and Optimization in Smart-Grids Politecnico di Torino

38

Case Study

• 10 EV y 3 Chargers

EV_j	1	2	3	4	5	6	7	8	9	10
a_j	1	5	8	11	11	12	15	16	19	19
d_j	5	10	13	15	13	15	20	18	22	21
Charger #	1	2	1	2	3	-	1	2	2	3

Charge Strategy	Cost [\$]	Savings [%]
Minimum Time	46.73	-
Economic MPC	34.24	26.74
MPC - Flexibility Maximization	43.18	7.61

Z.O

Politecnico di Torino

• 100 EV y 25 Chargers

Charge Strategy	Cost [\$]	Savings [%]
Minimum Time	454.35	-
Economic MPC	356.19	21.61
MPC - Flexibility Maximization	392.38	13.64

F. Ruiz - Control and Optimization in Smart-Grids

Politecnico di Torino

40

*

Case Study

F. Ruiz - Control and Optimization in Smart-Grids Politecnico di Torino

41

1000 iterations, randomizing EV arrival and departure time and Arrival SoC.

Charge Strategy	Average	Minimum	Average	Maximum	
	Cost [\$]	Saving	Savings	Saving	
Minimum Time	456.07	-	-	-	
Economic MPC	394.06	9.80%	13.59%	17.91%	
MPC - Flex Max	409.51	7.01%	10.20%	13.27%	

Charge Strategy	Average Cost [\$]	Minimum Saving	Average Savings	Maximum Saving
Minimum Time	433.80	-	-	-
Economic MPC	337.67	16.57%	22.15%	28.73%
MPC - Flex Max	374.75	9.14%	13.60%	18.63%

3/05/2018

F. Ruiz - Control and Optimization in Smart-Grids

Politecnico di Torino

Bibliography

[1] Diaz, C., Ruiz, F., Patino, D., 2017a. Analysis of Water Booster Pressure Systems as Dispatchable Loads in Smart- Grids. In: 7th IEEE International Conference on Innovative Smart Grid Technologies (ISGT Europe 2017). pp.1–6.

[2] Diaz, C., Ruiz, F., Patino, D., 2017b. Modeling and control of water booster pressure systems as flexible loads for demand response. Applied Energy 204, 106–116.

[3] Hao, H., Sanandaji, B. M., Poolla, K., Vincent, T. L., 2015. Aggregate Flexibility of Thermostatically Controlled Loads. IEEE Transactions on Power Systems 30 (1), 189–198.

[4] González Vayá, M., Andersson, G., 2015. Self Scheduling of Plug-In Electric Vehicle Aggregator to Provide Balancing Services for Wind Power. IEEE Transaction on Sustainable Energy, 1–14.