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Nonlinear system identification

 Consider a nonlinear system in regression form:
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 The function f o is unknown, but a finite set of 
noise-corrupted measurements of yt and wt is available:
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dt accounts for errors in data ,t ty w 
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Identification problem: find an estimate   of f of̂



 Related problems :
Ø for a given estimate

evaluate the identification error

 The estimation error cannot be exactly evaluated
since f o is not known

Ø find an estimate
minimizing the identification error

 Need of prior assumptions on f o and dt for 
deriving finite a bound on this error

Nonlinear system identification
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 Typical assumptions:

Ø on system:   

 Functional form of f o required:
Ø derived from physical laws
Ø si : basis function (polynomial, sigmoid,..)
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Ø on noise:    iid stochastic noise

 The parameters q are estimated by means of the 
Prediction Error method using least squares

Nonlinear system identification



Parametric approach
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( ) DFY += q

 Given T noise-corrupted measurements of yt and wt,

Measured output

Known function
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Parametric approach
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 Problem: is in general non-convex( )qTV

 Prediction Error estimate of θ:

least-squares



Parametric approach

 If possible, physical laws are used to obtain the
parametric representation of ( )q,wf

 When the physical laws are not well known or too 
complex, black-box parameterizations are used

“Fixed” basis 
parameterization
Polinomial, trigonometric, etc.

“Tunable” basis 
perametrization
Neural networks



“Fixed” basis functions
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Basis functions

 Problem: Can σi’s be found such that
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“Fixed” basis functions

 For continuous fo, bounded              and σi
polynomial of degree i (Weierstrass):
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Polynomial NARX models



“Fixed” basis functions

 Estimation of θ is a convex problem: DLY += q
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 Least-squares solution: ( ) YLLL ¢¢= -1q̂
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“Tunable” basis functions
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 One of the most common “tunable” parameterization
is the one-hidden layer sigmoidal neural network  



“Tunable” basis functions

 The parameters 𝛽! give more flexibility to the model, 
possibly providing a more accurate estimate

 On the other hand, parameter estimation require to 
solve a non-convex optimization problem, due to the 
fact that the parameters appear nonlinearly:

( ) DFY += q

nonlinear in 𝜃



Parametric models
 Model structure choice:

- type of basis  functions
- Number r of “Basis”  functions
- Number n of regressors

 Problem: curse of dimensionality
The number of parameters r needed to obtain 
“accurate” models may grow exponentially with 
the dimension n of regressor space

More relevant in the case of “fixed” basis functions

The complexity of 
these problems may 
be exponential in n.



 Under suitable regularity conditions on the function to 
approximate, the number of parameters r required 
to obtain “accurate” models grows linearly with n

 The estimation of θ requires to solve a non-convex
minimization problem

Trapping in local minima

“Tunable” basis functions



One-step/multi-step prediction, simulation


