Autonomous Mobile Robots, Chapter 5

L ocalization and Map Building

* Noise and aliasing; odometric position estimation
* Tolocalize or not to localize

- Belief representation

* Map representation

* Probabilistic map-based localization

 Other examples of localization system

» Autonomous map building

Environment Model

"Position"
Global Map

Locall Map
Perception Real World
Environment

—

Path
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Autonomous Mobile Robots, Chapter 5

L ocalization, Wheream 1?

position 1
o |
Predi Y‘ f A
Angotts L 2 rPols?'ﬂ 82 0 »
(e.g. odometry)

Map | predicted position _
database L— — — — — — - » Matching

\

matched
observations

e Odometry, Dead Reckoning 17 o sensor data or
» Localization base on external sensors, | extracted features

beacons or landmarks _
Observation

» Probabilistic Map Based Localization
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Challenges of Localization

Knowing the absolute position (e.g. GPS) is not sufficient
Localization in human-scale in relation with environment
Planing in the Cognition step requires more than only position as input

Perception and motion plays an important role
Sensor noise
Sensor aliasing
Effector noise
Odometric position estimation
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Sensor Noise

Sensor noise in mainly influenced by environment
e.g. surface, illumination ...

or by the measurement principle itself
e.g. interference between ultrasonic sensors

Sensor noise drastically reduces the useful information of sensor
readings. The solution is;

to take multiple reading into account
employ temporal and/or multi-sensor fusion
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Sensor Aliasing

In robots, non-uniqueness of sensors readings is the norm

Even with multiple sensors, there is a many-to-one mapping from
environmental states to robot’s perceptual inputs

Therefore the amount of information perceived by the sensorsis
generaly insufficient to identify the robot’s position from a single
reading
Robot’ s localization is usually based on a series of readings
Sufficient information is recovered by the robot over time
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Effector Noise: Odometry, Dead Reckoning

Odometry and dead reckoning:
Position update is based on proprioceptive sensors

Odometry: wheel sensors only

Dead reckoning: also heading sensors
The movement of the robot, sensed with wheel encoders and/or
heading sensors is integrated to the position.

Pros. Sraight forward, easy

Cons: Errorsare integrated -> unbound
Using additional heading sensors (e.g. gyroscope) might help to reduce
the cumulated errors, but the main problems remain the same.
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Odometry: Error sources

deterministic non-deterministic
(systematic) <@  (non-systematic)

deterministic errors can be eliminated by proper calibration of the system.

non-deterministic errors have to be described by error models and wi |l always
leading to uncertain position estimate.

Major Error Sources:
Limited resolution during integration (time increments, measurement resolution

..
Misalignment of the wheels (deterministic)

Unequal wheel diameter (deterministic)
Variation in the contact point of the wheel
Unequal floor contact (slipping, not planar ...)
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Odometry: Classification of Integration Errors

Range error: integrated path length (distance) of the robots movement
sum of the wheel movements

Turn error: similar to range error, but for turns
difference of the wheel motions

Drift error: difference in the error of the whedls leads to an error in the
robots angular orientation

Over long periods of time, turn and drift errors

far outweigh range errors!

Consider moving forward on a straight line along the x axis. The error
In the y-position introduced by a move of d meterswill have a component
of dsinDg, which can be quite large as the angular error Dg grows.
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5.2.4

Autonomous Mobile Robots, Chapter 5

Odometry: The Differential Drive Robot (1)

éx DX

—_e.,u _ u

P PP e

8ag =hefs
X
A

--Xf

© R. Siegwart, |. Nourbakhsh



Autonomous Mobile Robots, Chapter 5

Odometry: The Differential Drive Robot (2)

» Kinematics
Ax = Ascos(0+ AB72)

Ay = Assin(0+ A072)

As,—As,
AD =
b
As,+ As,
As = >
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5.2.4
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Autonomous Mobile Robots, Chapter 5 524

Odometry: The Differential Drive Robot (3)

o Frror model
k.AS, 0
X, = covar(As,, As;) = ;l .r|

0 A’,|A5,,|

_ i , I
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" 5F 3 o 1 0 —Assin(0+A0/2)
Fp = Vpf=V,(f) = |:—f i —f:| ~ 10 1 Ascos(6+A6/2)
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Autonomous Mobile Robots, Chapter 5 524

Odometry: Growth of Pose uncertainty for Straight Line M ovement

» Note: Errors perpendicular to the direction of movement are growing much faster!

Error Propagation in Odometry
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Autonomous Mobile Robots, Chapter 5 524

Odometry: Growth of Pose uncertainty for Movement on a Circle

» Note: Errors élipse in does not remain perpendicular to the direction of movement!
Error Propagation in Odometry
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Autonomous Mobile Robots, Chapter 5

5.2.4

Odometry: Calibration of Errors| (sorenstein [5])

» The unidirectional square path experiment
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Autonomous Mobile Robots, Chapter 5 524

Odometry: Calibration of Errors|| (sorenstein [5])

» The bi-directional sguare path experiment

Reference Wall

. (due to unequal wheel diameters).
. In the example here, this causes
. a 3 origntation error.

93 turn instead of 90° turn
(due to uncertainty about the |
effective wheelbase). :

\ Curved instead of straight path : 'K __

Pi8MIOS]
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square path, 4x4 m. \ ' ". /A
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Autonomous Mobile Robots, Chapter 5 524

Odometry: Calibration of Errorsil| (Borenstein [5))

* The deterministic and Y [m
non-deterministic errors A
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Autonomous Mobile Robots, Chapter 5

Tolocalize or not?

* How to navigate between A and B

» navigation without hitting obstacles

» detection of goal location

* Possible by following always the left wall

» However, how to detect that the goal is reached

i L o =

@ el g B Ecﬂi M
TP = BT 1

- H |:r L Fﬁﬂ I;L_ _;1 @E

e ] T
)

\_‘f@

i

© R. Siegwart, |. Nourbakhsh



Behavior Based Navigation

Sensors

communicate data

discover new area

detect goal position

avoid obstacles

» actuato rs>

REER

follow right / left wall

coordination / fusion
e.g. fusion via vector summation

© R. Siegwart, |. Nourbakhsh



Autonomous Mobile Robots, Chapter 5

Model Based Navigation

perception

Y

localization / map-building

sSensors

Y

actuators>

cognition / planning

L

motion control
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Autonomous Mobile Robots, Chapter 5

s

Belief Representation

probability P

A\

- a) Continuous map ' will

with single hypothesis postion X
b o A
&
* b) Continuous map 3;
with multiple hypothesis <
! | . ! -
position x
c D;A
- d) Discretized map s
with probability distribution g m
= [ — [1 = -
position x
: : : d A
« d) Discretized topological =
map with probability 5
distribution g
A ’B—‘ C D ? F T rGda >

of topological map n



Belief Representation: Characteristics

Continuous Discrete
Precision bound by sensor Precision bound by
data resolution of discretisation
Typically single hypothesis Typically multiple hypothesis
pose estimate pose estimate
Lost when diverging (for Never lost (when diverges
single hypothesis) converges to another cell)
Compact representation and | mportant memory and
typically reasonable in processing power needed.
Processing power . (not the case for topological

maps)
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Autonomous Mobile Robots, Chapter 5

Bayesian Approach: A taxonomy of probabilistic models

More general . Courtesy of Julien Diard
Bayesian
v S Sate
Bayesian O: Observation
Networks A: Action
v
S S @ 3 31 A
Markov Bayesian
Chain Filters
v v v v
Particle discrete semi-cont. continuous
Kaman
- SR Filters S S10A
More specific
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Single-hypothesis Belief — Continuous Line-Map

a) b) .

robot position =<
.0
\%‘ o« X s
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Autonomous Mobile Robots, Chapter 5 541

Single-hypothesis Belief — Grid and Topological Map
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Grid-base Representation - Multi Hypothesis

Grid size around 20 cm?.

Courtesy of W. Burgard

mliim| A | mam | mim

Path of the robot Belief states at positions 2, 3 and 4
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Autonomous Mobile Robots, Chapter 5

Map Representation

1.

2.

Map precision vs. application
Features precision vs. map precision

Precision vs. computational complexity

Continuous Representation

Decomposition (Discretization)

© R. Siegwart, I. Nourbakhsh



Representation of the Environment

Environment Representation

Continuos Metric ® Xx,y,q

Discrete Metric ® metric grid

Discrete Topological ® topological grid
Environment Modeling

Raw sensor data, e.g. laser range data, grayscale images

large volume of data, low distinctiveness on the level of individual values
makes use of all acquired information

Low level features, e.g. line other geometric features
medium volume of data, average distinctiveness
filters out the useful information, still ambiguities

High level features, e.g. doors, a car, the Eiffel tower
low volume of data, high distinctiveness
filters out the useful information, few/no ambiguities, not enough information
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Map Representation: Continuous Line-Based

Architecture map
Representation with set of infinite lines

]

(a) (b)
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Map Representation: Decomposition (1)

Exact cell decomposition
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Autonomous Mobile Robots, Chapter 5 552

Map Representation: Decomposition (2)

* Fixed cell decomposition
» Narrow passages disappear
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Map Representation: Decomposition (3)

Adaptive cell decomposition

start

e goal
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Map Representation: Decomposition (4)

Fixed cell decomposition — Example with very small cells

- Courtesy of S Thrun
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Map Representation: Decomposition (5)

 Topologica Decomposition
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Autonomous Mobile Robots, Chapter 5 552

Map Representation: Decomposition (6)

» Topological Decomposition =]

de /
o /

Connectivity
(arch)
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Map Representation: Decomposition (7)

 Topologica Decomposition

~10m
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Autonomous Mobile Robots, Chapter 5
State-of-the-Art: Current Challengesin Map Representation

* Real world isdynamic

* Perception is still amajor challenge
» Error prone
» Extraction of useful information difficult

 Traversal of open space
» How to build up topology (boundaries of nodes)

» Sensor fusion
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Autonomous Mobile Robots, Chapter 5 5606.1

Probabilistic, Map-Based L ocalization (1)

» Consider a mobile robot moving in a known environment.

» Asit start to move, say from a precisely known location, it might keep
track of itslocation using odometry.

* However, after a certain movement the robot will get very uncertain
about its position.

=» update using an observation of its environment.

» observation lead also to an estimate of the robots position which can
than be fused with the odometric estimation to get the best possible
update of the robots actual position.
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Autonomous Mobile Robots, Chapter 5 5606.1

Probabilistic, Map-Based L ocalization (2)

 Action update
» action model ACT

s', = Act(o,, s, )

with o;: Encoder Measurement, s_,: prior belief state
» Increases uncertainty

* Perception update
» perception model SEE

§, = See(i,s',)

with i;: exteroceptive sensor inputs, S';: updated belief state
» decreases uncertainty
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Autonomous Mobile Robots, Chapter 5 5606.1
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Probabilistic, Map-Based L ocalization (3)

Given
the position estimate p(k‘k)
itscovariance S _(klk) for timek,
the current control input ~ U(K)
the current set of observations Z (k +1) and
the map M (k)

Compute the
new (posteriori) position estimate p(k + juk +1) and

itscovariance S (K +:uk +1)

Such a procedure usually involves five steps:
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Autonomous Mobile Robots, Chapter 5

5.6.1

The Five Stepsfor Map-Based L ocalization

Prediction of
%» M easurement and ||
Position (odometry)

M
dataggse

predicted feature
observations

1. Prediction based on previous estimate and odometry
2. Observation with on-board sensors

3. Measurement prediction based on prediction and map
4. Matching of observation and map

5. Estimation -> position update (posteriori position)

position Estimation
estimate (fusion)
A
matched predictions
and observations
YES
» Matching
raw sensor data or
S extracted features
E= Observation
@’ on-board sensors
i
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Autonomous Mobile Robots, Chapter 5 5606.1

Markov <& Kalman Filter Localization

e Markov localization « Kaman filter localization

» localization starting from any » trackstherobot and isinherently
unknown position very precise and efficient.

» recovers from ambiguous » However, if the uncertainty of the
situation. robot becomes to large (e.g.

> However, to update the probability collision with an object) the
of all positions within the whole Kalman filter will fail and the
state space at any time requires a position is definitively |ost.

discrete representation of the
space (grid). The required memory
and calculation power can thus
become very important if a fine
gridis used.
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Autonomous Mobile Robots, Chapter 5 5_6_2

Markov Localization (1)

» Markov localization uses an
explicit, discrete representation for the probability of
all position in the state space.

» Thisis usually done by representing the environment by a grid or a
topological graph with afinite number of possible states (positions).

 During each update, the probability for each state (element) of the
entire space is updated.
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Markov L ocalization (2): Applying probabilty theory to robot localization

P(A): Probability that A istrue.
e.g. p(r, = l): probability that the robot r is at position | at timet

We wish to compute the probability of each indivitual robot position
given actions and sensor measures.

P(A|B): Conditional probability of A given that we know B.

e.g. p(r, = ] i,): probability that the robot is at position | given the
sensorsinput i,.

Product rule:  p(4 A B) = p(4|B)p(B)
p(AAB) = p(BlAd)p(4)
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Markov L ocalization (3) Applying probability theory to robot localization

Bayesrule: p(B|4)p(A)
A|B) =
p(A|B) > (B)

Map from a belief state and a sensor input to a refined belief state (SEE):

p(lli) = p(i|Dp(0)
p(i)

p(): belief state before perceptual update process
p(i |I): probability to get measurement i when being at position |

consult robots map, identify the probability of a certain sensor reading for each
possible position in the map

p(i): normalization factor so that sumover all | for L equals 1.
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Markov L ocalization (4): Applying probability theory to robot localization

Bayesrule: p(B|4)p(A)
A|B) =
p(A|B) > (B)

Map from a belief state and a action to new belief state (ACT):
p(1r|oz) - Jp(ltvt— podp(l,_pdl,
Summing over all possible ways in which the robot may have reached I.

Markov assumption: Update only depends on previous state and its
most recent actions and perception.
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Autonomous Mobile Robots, Chapter 5
Markov Localization: Case Study 1 - Topological Map (1)

* The Dervish Robot
 Topological Localization with Sonar
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Markov Localization: Case Study 1 - Topological Map (2)

Topological map of office-type environment

R2
R1 f
HI H1-2 H2 H2-3 H3 (—)
HI-2 H2 H 2-3  H3
Wall Closed Open Open Foyer
door door hallway
Nothing detected 0.70 0.40 0.05 0.001 0.30
Closed door detected 0.30 0.60 0 0 0.05
Open door detected 0 0 0.90 0.10 0.15
Open hallway detected | 0 0 0.001 0.90 0.50
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Markov Localization: Case Study 1 - Topological Map (3)

Update of believe state for position n given the percept-pair |
p(nli) = p(i|n)p(n)

p(nii): new likelihood for being in position n R
p(n): current believe state T e T P T
p(i : n): prObabI I Ity Of %el ng I I n n (%e tabl e) Open hallway detected | 0 0 u:mn n:t)() “:5;,

No action update !

However, the robot is moving and therefore we can apply a combination
of action and perception update

P(”r|fr) B J.p(”r|”1r—fs i)p(n', ;)dn';_,

t-1 isused instead of t-1 because the topological distance betweenn’ and
n can very depending on the specific topological map
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Markov Localization: Case Study 1 - Topological Map (4)

The calculation

p(n|n', ;1)
Is calculated by multiplying the probability of generating perceptual
event i at position n by the probability of having failed to generate
perceptual event sat all nodes between n’ and n.

P(”r|’7'r—n i,) = pli,n,) p(QD,n,_) p(D,n,_5) ...-p(D,n,_..)
+ ]

‘lll—Zl
| |
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Markov Localization: Case Study 1 - Topological Map (5)

Example calculation
Assume that the robot has two nonzero belief states + ‘
p(1-2)=10 ; p2-3)=02 * B
at that it is facing east with certainty ' U — —
Sate 2-3 will progress potentially to 3 and 3-4 to 4.
Sate 3 and 3-4 can be eliminated because the likelihood of detecting an open door
IS zero.

The likelihood of reaching state 4 is the product of the initial likelihood p(2-3)= 0.2,
(a) the likelihood of detecting anything at node 3 and the likelihood of detecting a
hallway on the left and a door on the right at node 4 and (b) the likelihood of
detecting a hallway on the left and a door on the right at node 4. (for ssimplicity we
assume that the likelihood of detecting nothing at node 3-4 is 1.0)

Thisleadsto:
0.2 x[0.6 X0.4 + 0.4 x0.05] x0.7 x[0.9x0.1]] ® p(4) = 0.003.
Smilar calculation for progress from 1-2 ® p(2) = 0.3.

* Note that the probabilities do not sum up to one. For simplicity normalization was avoided in this example
© R. Siegwart, |. Nourbakhsh



Markov Localization: Case Study 2 — Grid Map (1)

Fine fixed decomposition grid (X, ¥, ), 15cmx 15cmx 1°
Action and per ception update
Action update:

Sum over previous possible positions
and motion model

Pl o) = ZP(H/'F_ 0Pl _ 1)
-

& L
_ _ /;/; ,/;/;i/;/j/;/;//
Discrete version of eq. 5.22 W
- - e
Perception update: o | ===
Given perception i, what is the £

probability to be a location |
pl|i) =

Courtesy of
W. Burgard

(0,0.0)
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Markov Localization: Case Study 2 — Grid Map (2)

L. : : : (i )p(l)
The critical challengeisthe calculation of p(ijl) »U]i) = ]le(—,}))
The number of possible sensor readings and geometric contextsis extremely large

p(ijl) is computed using a model of the robot’ s sensor behavior, its position |, and
the local environment metric map around I.

Assumptions

Measurement error can be described by a distribution with a mean
Non-zero chance for any measurement

0.125 e ] nizs [ T [
—— approximated — approximated
----- measured -e—=- measured
~ ot : = 0l
:: expected Mistance: o ; 2 expected distance o,
= pars 5 0075 :
£ £
E £ ;
% 0.05 E 0.05
0:025 |- 0.025
R ¢
0 T I T piz . 0 % w S Courtesy of
measured distance « [em] measured distance «. [cm] W B
' ’ . Burgard
Ultrasou nd Laser range_flnder © R. Siegwart, |. Nourbakhsh



Markov Localization: Case Study 2 — Grid Map (3)

The 1D case

Sart
No knowledge at start, thus we have
an uniform probability distribution.
Robot perceivesfirst pillar

Seeing only one pillar, the probability
being at pillar 1, 2 or 3isequal.

Robot moves

Action model enablesto estimate the
new probability distribution based
on the previous one and the motion.

Robot percelves second pillar

Base on all prior knowledge the
probability being at pillar 2 becomes
dominant

.

.

==

=

=l =] ==
=l =] =
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=
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Markov Localization: Case Study 2 — Grid Map (4)

Example 1: Office Building

Courtesy of

W. Burgard

——¢— Position 5

| [:' M

' _FJ—'I — -
; S IL“!*‘lﬂiT I

Position 4




Markov Localization: Case Study 2 — Grid Map (5)

Courtesy of
Example 2: Museum W. Burgard
Laser scan 1
1 &

© R. Siegwart, |. Nourbakhsh



Markov Localization: Case Study 2 — Grid Map (6)

Courtesy of
Example 2: Museum W. Burgard

Laser scan 2

5
!
i
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Markov Localization: Case Study 2 — Grid Map (7)

Courtesy of
Example 2: Museum W. Burgard

Laser scan 3
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Markov Localization: Case Study 2 — Grid Map (8)

Courtesy of
Example 2: Museum W. Burgard

Laser scan 13

Izq
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Markov Localization: Case Study 2 — Grid Map (9)

Courtesy of
Example 2: Museum W. Burgard

Laser scan 21
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Markov Localization: Case Study 2 — Grid Map (10)

Fine fixed decomposition grids result in a huge state space
Very important processing power needed
Large memory requirement
Reducing complexity
Various approached have been proposed for reducing complexity
The main goal isto reduce the number of states that are updated in each
step
Randomized Sampling / Particle Filter

Approximated belief state by representing only a ‘representative’ subset
of all states (possible locations)

E.g update only 10% of all possible locations

The sampling processis typically weighted, e.g. put more samples
around the local peaksin the probability density function

However, you have to ensure some less likely locations are still tracked,
otherwise the robot might get lost
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Autonomous Mobile Robots, Chapter 5 ) 6 3

Kalman Filter Localization

System error
source

Y

Control —= System

Systemn state

(desired but
not known)
Y Observed Optimal estimate of
Measuring I measurement system state
devices I -
Measurement

Srror sources
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Autonomous Mobile Robots, Chapter 5 56.3

Introduction to Kalman Filter (1)| .,

* Two measurements A
¢, = ¢, with variance cﬁ ‘ [ Lo
2

4, = ¢, with variance o5

» Weighted |leas-square
S = Zm'f{t}—q;)z

=1 A A
° FI ndl na mi n| mum exror
1
2y wilg—q;) =

aq Zu(q q,)’
=1

» After some cal culation and rearrangements

o] g

2
0,

g =q,+ (45— q,)
GI+G§
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Autonomous Mobile Robots, Chapter 5

|ntroduction to Kalman Filter (2)

* In Kalman Filter notation

O 2 3
Ky 2 2 » 0 =0
Gk+cz
2 2 2

5.6.3
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Autonomous Mobile Robots, Chapter 5

Introduction to Kalman Filter (3)

5.6.3

» Dynamic Prediction (robot moving) |

dx - '
8X — wtw u _velpcﬂy
dr W = noise

» Motion

Xp = Xt u(t, —1)

2 > 2
Cp = 0y +0, [t —1;]

» Combining fusion and dynamic prediction

Xpo1 = Nt R (Zp ) —Xp)

* o x(1)

J(x) A
19 = g LML)
oA2T 267
o(1p)
L e p g — — — U
&
() Xy )

= It ult =t + Ky Lz =X —ulty = 1))

2
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22
op+ ol — 1]

K}-:Jrl == ¥ 5

oy + 0,

2 2 2
Gy T Gw[rk =1 'tfa'] +0;
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Robot Position Prediction

In afirst step, the robots position at time step k+1 is predicted based on
Its old location (time step k) and its movement due to the control input

u(k):
p(k +ﬂk) = f (f)(k‘k), u(k)) f: Odometry function

S,(k+1k) =R {8 (Kk)N T +R, f>x5,(k)*,
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Robot Position Prediction: Example

ebDs +Ds Ds - Ds,u
sk § 2 a8 )3
Bk +1) = (k) +u(k) = S0 d+ @dn((ﬁ%m Odometry
BE Ds, - Ds i
e b d
S, (k+1k) =R, f 58 (Kk)xR, T +R, f 55,(k), 7
‘
t=k+1
é|[Ds| 0 U
S, (K) = ¢ ,
978 0 Kiosld plk+1)
y p(k) =
i \ t=K
WS .
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Observation

The second step it to obtain the observation Z(k+1) (measurements) from
the robot’ s sensors at the new location at time k+1

The observation usually consists of a set n, of single observations z(k+1)
extracted from the different sensors signals. It can represent
aswell as like lines, doors or any kind of landmarks.

The parameters of the targets are

Ther efore the observations have to be transformed to the world frame {\W}
or

the measurement prediction have to be transformed to the sensor frame {S}.
This transformation is specified in the function h;, (seen later).

© R. Siegwart, |. Nourbakhsh



Autonomous Mobile Robots, Chapter 5 56.3
Kalman Filter for M obile Robot L ocalization

Observation: Example

Raw Date of Extracted Lines Extracted Lines
L aser Scanner in Model Space
I I I | | | I I | | | \\I | \‘\ | | | ‘rA
5t E
|
| line j
2| J L/, % %
=l %
> ol i, R
-1} T O 0 T
el
R4 & Sensor
-3t ea . u
al Zj (k+1): érjg ]SrObOt)
) | | | | | | | | | e ] u rame
-5 -4 -3 =2 —:[m] 0 1 2 3 4
€S S, U
S.Rj(k+1)—éaa aQ
esra Srr Uj
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M easur ement Prediction

In the next step we use the predicted robot position p = (k +ﬂk)
and the map M(k) to generate multiple predicted observations z.

They have to be transformed into the sensor frame
z(k+1)=h (Zt ,Ap(k "':uk))

We can now define the measurement prediction as the set containi ng
al n, predicted observations

Z(k+1)={z (k+1)(LEi £n )}

The function h, is mainly the coordinate transformation between the
world frame and the sensor frame
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M easurement Prediction: Example

» For prediction, only the wallsthat arein
the field of view of the robot are selected.

 Thisis done by linking the individual
lines to the nodes of the path

5.6.3
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Kalman Filter for Mobile Robot L ocalization
M easurement Prediction: Example

* The generated measurement predictions have to be transformed to the

robot frame { R} W R
W, < o, N RZ _ |G,
i L
! ! i

 According to the figure in previous slide the transformation is given by

W

o, ,— O(k+1[k)

= x|k cos(Tay )+ hk+ 11k sin(Ta, )

R
Z(k+1) = [ﬂti = h(z, » plk+ 1|k))l

Pt
and its Jacobian by
da, ; da, ; daL,
2w 0 0 I
Vh, = | 9% & 00| = o
dr, ; Or, ; OF, —cos 0, ; —sin o, ; 0
EC
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Matching

Assignment from observations z(k+1) (gained by the sensors) to the targets z (stored in
the map)

For each measurement prediction for which an corresponding obser vation is found we
calculate the innovation:

v (k+1) = [2(k+ 1) —h(z, plk+ 1[K))]
T W T
_oy| o, — " O(k+1]k)
7 i s _ W WA, W
/ f';_,-—( x{k+ llfx)CDS( U[M)-l- _1--‘(/\ + 1|A] sin( U:f.f))

and its innovation covariance found by applyi ng the error propagation law:
2y (k+1) = Vh,- ZN(/H L|k)-Vh, " 2p (k+1)

The validity of the correspondence between measurement and prediction can e.g. be
evaluated through the Mahalanobis distance:

vok+1) - Zpy h+ 1) v (k+ 1)< g’

&
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Matching: Example

5.6.3

image space

D

A
r
model space %
No match!!
Wall was not
observed.
match j,i
fj |
L % ® 4
I p
-t 00 0 (s
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Matching: Example

« To find correspondence (pairs) of predicted and observed features we
use the Mahalanobis distance

v+ 1) Epy (k4 1) vik+ 1)< g

with
v (k+1) = [z;(k+1)=h(z, p(k+ 1]k))]
) |:(1{| ) H‘GE‘,?.,-— H"é(k 4 M)
£y ”}«U_ 3k + L|k) u::(:]ns(w-:)tqu )+ H}(k + 1]k) sin( ”'rct;f_ ))

Skt 1) = Vi E (k+1k)- Vi, +Zp (k+ 1)
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Estimation: Applying the Kalman Filter

» Kalman filter gain:
Kk+1) = Z,(k+1]k) - Vi - Zju(k+1)

» Update of robot’s position estimate:

plk+1|k+1) = p(k+1]k)+ K(k+1)-v(k+1)

» The associate variance

S (k+1|k+1) = Z,(k+ 1|k)-K(k+1)-Zpp(k+1)- K (k+1)
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Estimation: 1D Case

- For the one-dimensional case with /,(z,. p(k+ 1|k)) = z, we can
show that the estimation corresponds to the Kalman filter for one-
dimension presented earlier.

o+ 11k o (k+ 1[k)

on(k+1)  ou(k+1]k)+op(k+1)

K(k+1) =

plk+ 1k+1) = p(k+1]k)+ K(k+1)-v(k+1)
= p(k+1[k)+K(k+ 1) [z,(k+1)=h(z,, p(k+ 1]|k))]

= plk+1]k) + K(k+ 1) [z;(k+1)—z,]
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Estimation: Example

« Kalman filter estimation of the new robot
position P(k[k):
» By fusing the prediction of robot position
(magenta) with the innovation gained by
the measurements (green) we get the

updated estimate of the robot position
(red)
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Other Localization M ethods (not probabilistic)
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L ocalization Baseon Artificial Landmarks
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Other Localization Methods (not probabilistic)

L ocalization Base on Artificial Landmarks

+45 0 45 | w45

Figure 6.11: a. The perceived width of a retroreflective target of known size is used
to calculate range; b. while the elapsed time between sweep initiation and leading
edge detection yields target bearing. (Courtesy of NAMCO Controls).

/77

Figure 6.10: The LASERNET system can be used

with projecting wall-mounted targets to guide an

AGV at a predetermined offset distance. (Courtesy

of NAMCO Controls.} © R. Siegwart, I. Nourbakhsh
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L ocalization Base on Artificial Landmarks
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Figure 7.5: Polarized retroreflective proximity sensors are
used to locate vertical strips of retroreflective tape
attached to shelving support posts in the Camp Elliott
warehouse installation of the MDARS security robot
[Everett et al, 1994).
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Positioning Beacon Systems. Triangulation
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Figure 6.1: The basic triangulation problem: a rotating sensor
head measures the three angles A, A,, and A; between the
vehicle's longitudinal axes and the three sources S;, S;, and S;.
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Positioning Beacon Systems. Triangulation

base station

ultrasonic
beacons

collection of robots
with ultrasonic receivers

—
S
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Positioning Beacon Systems. Triangulation

0
- —>
4 - umns = i — b
b \\‘—-—._.—-"‘l

© R. Siegwart, I. Nourbakhsh



Autonomous Mobile Robots, Chapter 5
Other Localization Methods (not probabilistic)

Positioning Beacon Systems: Docking

Sonar receiver

" Right zone

Sonar transmitter )

E))ocking S
eacon #
controller L Opiical axis

Optical beacon ™.,
head
Beacon sensor
~.. Left zone

Figure 6.6: The structured-light near-infrared beacon on the
Cybermotion battery recharging station defines an optimal path of
approach for the K2A Navmaster robot [Everett, 1995].

5.7.3
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Positioning Beacon Systems: Bar-Code

Bar Code

e
| =ei

Figure 6.14: Schematics of the Denning Branch Figure 6.15: Denning Branch International
International Robotics LaserNav laser-based scanning Robotics (DBIR) can see active fargets at up
beacon system. (Courtesy of Denning Branch International to 183 meters (600 ft) away. It can identify up
Robotics.) to 32 active or passive targets. (Courtesy of

Denning Branch International Robotics.)
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Positioning Beacon Systems

5.7.3

Stationary
NOADs

3000+ rpm

/:gj
Cable link =

radio link to
host PC

heading data
link

system employs an onboard, rapidly rotating and vertically spread laser beam, which
sequentially contacts the networked detectors. (Courtesy of MT | Research, Inc.)
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Autonomous Map Building

Starting from an arbitrary initial point,
amobile robot should be able to autonomously explore the
environment with its on board sensors,

gain knowledge about it,
Interpret the scene,
build an appropriate map
and localize itself relative to this map.

The Simultaneous Localization and Mapping Problem

© R. Siegwart, |. Nourbakhsh



Map Building:
How to Establish aMap

1. By Hand 3. Basic Requirements of a Map:

= a way to incorporate newly sensed
information into the existing world model

— information and procedures for estimating
T J the robot’ s position

information to do path planning and other
navigation task (e.g. obstacle avoidance)

!

2. Automatically: Map Building

Measure of Quality of a map
The robot learns its environment topological correctness _ -
metrical correctness predictability

Motivation:

- by hanpl: hard and .costly | But: Most environments are a mixture of
- dynamically changing environment predictable and unpredictable features

- different look due to different perception ® hybrid approach

model-based vs. behaviour-based
© R. Siegwart, |. Nourbakhsh
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Map Building:
The Problems

1. Map Maintaining: Keeping track of
changes in the environment

e.g. disappearing
cupboard

- e.g. measure of belief of each
environment feature

2. Representation and
Reduction of Uncertainty

position of robot -> position of wall

position of wall -> position of robot

* probability densities for feature positions
« additional exploration strategies
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General Map Building Schematics

Map Building and Maintenance

Refine Feature Add New Remove Offensive
Encoder Parameters Features Features
increase credibility extend map decrease credibility
A A
] position
Prediction of estimate Estimation(fusion)
Measurement and using confirmed map
Position (odometry)
e
a2 matched predictions unexpected unobserved
g o and observations observations predictions
o
o YES YES
L
S 3
@ o
< Unexpected

Observation?

M = {Zf, ZI’ Cfl(l <S5 H)} .rawsensordataor

extracted features

credibility factor c,

Observation
on-board sensors

Perception




Map Representation

M isaset n of probabilistic feature locations

Each feature is represented by the covariance matrix S, and an
associated credibility factor c,

M= {z,%,¢|(1<t<n)}

c, is between 0 and 1 and quantifies the belief in the existence of the
feature in the environment
ng Ay,
-4

ehk) = 1—e

aand b define the learning and forgetting rate and n, and n,, are the
number of matched and unobserved predictions up to time Kk,
respectively.
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Autonomous Map Building

Stochastic Map Technique

T
- Stacked system state vector: X = [ (k) x, (k) x,(k) ... x, (k)

- State covariance matrix: c,

r Updated
A Extracted line fga:::fe

7

Map feature
> O
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Cyclic Environments

- Small local error accumulate to arbitrary large global errors!
» Thisisusualy irrelevant for navigation
» However, when closing loops, global error does matter
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Dynamic Environments

» Dynamical changes reguire continuous mapping

» If extraction of high-level features would be
possible, the mapping in dynamic
environments would become .

significantly more straightforward. V
» e.g. difference between human and wall
~ Environment modeling is a key factor / . o@
for robustness @
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Map Building:
Exploration and Graph Construction

1. Exploration

——> explore

—> 0on stack

—> already
examined

- provides correct topology
- must recognize already visited location
- backtracking for unexplored openings

2. Graph Construction

Where to put the nodes?

» Topology-based: at distinctive locations

* Metric-based: where features disappear or
get visible

—y
&

*- Dag S
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